Tag Archives: writing

574. Learning Spaceflight

I learned how to fly in space before spaceflight existed, from science fiction writers who, in turn, learned it from pioneers like Robert Goddard, Willy Ley, Herman Oberth, and Wernher von Braun. Or Tsiolkovsky in Russia. The pioneers’ tool was mathematics. They speculated, then looked at those speculations through the unblinking eye of calculations. They taught everyone how to fly in space long before NASA existed. Later some of them worked for NASA.

When I was researching for a post on Apollo Eight, I encountered reference to the barbecue roll. I had known about that maneuver from science fiction, long before Apollo Eight.

The barbecue roll is needed because vehicle in deep space is surrounded by vacuum with sunlight impinging on one side and sub-polar cold on the other. In low Earth orbit, that condition only lasts 45 minutes of every 90 minute orbit followed by pure cold in the Earth’s shadow. Apollo Eight was the first manned vehicle to endure that temperature imbalance on a long term basis — roughly five days. That’s a lot of stress.

The solution, used on Apollo Eight, then Apollo’s Ten through Seventeen, was to spin the craft about it’s long axis. It was called the barbecue roll, as in a rotisserie. You can hear that phrase used in the movie Apollo 13, and it will probably appear on the movie First Man when it comes out in October.

Anyone who had read any science fiction knows about spinning ships to provide artificial gravity. That’s not what we are talking about. The barbecue roll was quite slow, the distance from center of craft to skin was small, and any pseudo-gravity produced was probably imperceptible. The entire purpose of the roll was to equalize heat distribution by exposing all parts of the skin to heat, then cold, in sequence.

Long before there were real spacecraft, I had read about this maneuver in early science fiction, probably multiple times. It made me want to know who thought it up, which scientist first wrote about it, and how many decades before it was needed was it speculated into existence.

It struck me as a prime example of the kind of thing the pioneers did while they were writing the rules of the game, long before the game was ever played.

I looked for answers and struck out. I spent far too many hours reading the same few references on the internet, usually repeated without credit, or reading technical articles. The papers scientists and engineers write are long on facts, but short on history.

Somewhere, somewhen, somebody was dreaming about his imagined spacecraft out in a long orbit between the planets, and figured out how to equalize temperature. It might have happened several times independently. I would love to have been there, in the dormitory lounge of some engineering department, or in a meeting of enthusiasts at some model rocket club, or in the bedroom of some kid like Asimov in America or Clarke in Great Britain or some kid whose name I can’t even guess in Russia. What fun to be there when some nerd (before the word existed) slapped his head and said, “Hey, listen to this!”

Of course that moment in inaccessible, but somewhere, sometime, somebody wrote down his speculations in a paper that only enthusiasts would ever read. That is what I could have reasonably hoped to find. If you have any clues where I could continue the search, please reply to this post.

What I finally did find was one partial reference in Heinlein’s The Rolling Stones, quoted here:

The weather outside the orbit of Mars is a steady ‘clear but cold’; no longer would they need reflecting foil against the Sun’s rays. Instead one side of the ship was painted with carbon black and the capacity of the air-heating system was increased by two coils.

I clearly remember, from several sources, the notion of painting part of a vehicle black to better absorb solar energy as ships moved out further from the sun. One nagging memory has a ship painted with white and black stripes and spun. Heinlein did not spin his ship; he distributed heat to the cold side via refrigerant coils. In that particular novel, Heinlein had to maintain a non-spinning ship for plot reasons. In science fiction, physics start the ball rolling but plot determines where that ball ends up.

We’ll look closer at The Rolling Stones as a textbook for spaceflight within the solar system on Monday.

573: Apollo 9: Full and Complete

Apollo 9 was the first mission to fly full and complete: Saturn V booster, CSM, LM, and lunar rated spacesuits. They weren’t going to the moon, but they were checking out all the equipment that would take astronauts there.

Jim McDivitt was Commander, David Scott was the Command Module Pilot, and Rusty Schweickart was Lunar Module Pilot. Those designations are a bit misleading. Flying any part of a mission frequently took all hands. It took two people to land on the moon and the Commander was the lead pilot with the Lunar Module Pilot in something like a co-pilot’s role.

This was to be the first flight by a full fledged LM. (By this time NASA had dropped the acronym LEM because the word excursion seemed frivolous, but civilians and the media still called it the LEM.) A LEM mockup had flown unmanned, but the LM that flew on Apollo 9 had been much updated since then.

Apollo 9 lifted off on March 3, 1969 into low earth orbit. The Saturn third stage and attached CSM and LM were then moved into a slightly higher orbit, where the CSM separated, reversed and performed its first docking. The multipart cone which covered the LM was jettisoned at this time. (See 569, and animation in the film Apollo 13). The Saturn V third stage separated at this time and the combined CSM and LM moved away.

The Saturn V third stage had it’s own work to do. It’s engines were fired again to change the orbit’s apogee (high point). Once apogee was reached, the engines fired again to achieve a solar orbit. This firing did not achieve its proper objective, so a third firing took place later. Practically speaking, this merely got the third stage out of the way, but it also gave NASA a chance to once again check the flight characteristics of the Saturn stage which would, on subsequent missions, place the Apollo mission on orbit to the moon.

Aside: if you plan to read more on these subjects you will run into the terms S-IVB, which is the designation for a Saturn V third stage, and SPS, which is the designation for the rocket engine in the Service Module.

Now the CSM was flying backward in orbit attached to the LM, and the LM had opened its struts to a landing stance. The CSM fired it’s rocket for the first time (docking had been done on maneuvering thrusters), raising the orbit and providing the first test for the main engine.

Aside again: this mission should have happened before sending a crew around the moon. Although most of the events of Apollo 9 were firsts, a few things like firing the CSM’s main rocket had already been done on Apollo 8. However, the ability of the linked-up CSM and LM to fly under power had not been tested before.

The next day, the CSM/LM made three more burns, changing orbits and testing the integrity of the CSM/LM connection.

On the third flight day, McDivitt and Schweickart (with backpacks) transferred from the CM to the LM by way of the tunnel between hatches. The day was spent testing out the LM, including a six minute burn of the descent stage engine. McDivitt controlled the last minute manually, throttling up and down and shutting off the engine, just as astronauts would do on a actual moon landing. All this was performed while CSM and LM remained linked-up.

The fourth day of the flight, McDivitt and Schweickart returned to the LM. Schweickart spent thirty-eight minutes testing his spacesuit outside the vehicle. He had also been scheduled to crawl over to the CM to demonstrate how astronauts could be rescued after returning from a moon landing, should the two craft be able to rendezvous, but not dock. Space sickness made this maneuver impossible, but everything in the hardware itself checked out.

On the fifth day of the flight, McDivitt and Schweickart entered the LM for the third and last time, and separated from the CSM.

That is fifty years to the minute before this was supposed to be posted, assuming that my math and data from several different sources were all correct. Great plan, but my internet went down for three days. If fact, this post is coming out about three hours late, but at least I made it before Friday slipped away.

The major test of the LM descent stage engine had already taken place on day three. Now, it fired twice, first to raise the LM’s orbit and then to make it more circular. This was done to separate adequately from the CSM.

The descent stage of the LM was now jettisoned and the ascent stage engine was fired for the first time. This burn moved the LM ascent stage to 75 miles behind and 10 miles below the CSM. Over the next six hours, the LM ascent stage achieved rendezvous and docking. The astronauts moved back into the CSM, and the ascent stage was released. By remote control, it was ordered to fire its engines one last time and burned up in the atmosphere. The descent stage remained in orbit until 1981.

The remainder of the flight was uneventful. The CM splashed down north of Puerto Rico. The SM burned up on reentry, as would all subsequent SMs.

Almost no one remembers Apollo 9. It wasn’t the first Apollo into Earth orbit and it never went near the moon. It was a working astronaut’s flight, one more incremental testing of equipment. But when it was over, everything was ready for the moon landing.

Well, almost everything. There was still the matter of maneuvering the LM downward into a gravity well and out again, and the matter of getting good enough close-up views of the moon’s surface to be sure a landing could be done. Those would be the task of Apollo 10, in May.

One last aside: The April issue of the magazine Astronomy has interviews by the astronauts of Apollo 9. It just came out and I didn’t have time to read it before posting this.

572. Apollo 9: Spacesuits

Left photo, the first American spacewalk using an umbilicus. Middle photo, the inner layer of a moon rated suit. Right photo, same suit with outer layer, visor, and backpack.

If you have not been following these Apollo posts, here is a quick summary: when three astronauts died on the launch pad, their scheduled flight was renamed Apollo 1. The flight which completed their mission, after much delay, was called Apollo 7 following the original sequence. Apollo’s “2 through 6” never existed.

The next flight, originally Apollo 8, was to be a repeat of 7, but was changed to be the first launch of the complete Apollo package, Control Module, Support Module, and Lunar Module. However, delays in building the LM (or LEM as it was called in the early days) meant that flight could not happen by the scheduled date. The Apollo 8 which actually flew was a different Saturn, different CSM without an LM and different crew. They <flew around the moon>.

The first flight with all parts of the Apollo was pushed back, renumbered to Apollo 9, and flew fifty years ago yesterday, March 3, 1969. A full picture of the shuffling of missions and crews would take more words that even the geekiest reader could tolerate.

=========

Apollo 9 was the second manned flight atop a Saturn V, and the first to have both CSM and LM on board. Jim McDivitt was in command. David Scott was the CM pilot and Rusty Schweickart was the LM pilot. Don’t confuse him with Jack Swigert of Apollo 13.

There were two main objectives for the ten day mission. First was to test the ability of the astronauts to dock the CSM to the LM, to undock and fly the LM separately, both as a complete unit and the ascent stage alone, and to dock the ascent stage to the CSM once again. The second objective was to test out the first American space suit which was not tethered to its mother vehicle.

We will concentrate on the space suit today and look at the testing of the LM on Friday. That will be posted at 3 PM, PDT, fifty years to the minute from the first separation of the LM from its CSM.

=========

The space suits worn by both Americans and Russians had not allowed true freedom. Cooling, power, and life support gasses were never contained in the suits, but were sent to the suits by umbilical connections. As long as the crew was inside the vehicle, this posed no problem. The suits were deflated and for long periods of each mission, helmets and gloves were removed. During launch and return, the suits were again made air tight but were not inflated. There was no need. If the cabin had been breached during those maneuvers, the suits would have continued to provide life support.

I never seen it admitted, but clearly both NASA and the Russians were flirting with disaster through all those early flights. Let me explain.

When the first spacewalks (EVAs, extra vehicular activities) were made by Alexey Leonov and then Ed White, the space suits proved to massively restrict mobility. Leonov could barely get back into his vehicle because his suit had puffed up so much. Ed White only got back into Gemini IV with great difficulty and with the help of fellow astronaut Jim McDivitt.

You can imagine what would have happened on any early fight if there had been a hull breach during a reentry, and the pilot’s spacesuit had suddenly become stiff and unmanageable when every second was critical.

Small glitches kill pilots, as everyone in aeronautics knows.

Five missions after White’s EVA, Eugene Cernan nearly died during a spacewalk because his suit was so unmanageable. See  posts 295 and 296. It took three more EVAs on three missions by three additional astronauts until before spacewalks were brought under control.

All of these EVA’s, Russian and American, used umbilicals to provide life support and to tether astronauts to their vehicles. That was not going to work on the moon.

The development of a suit suitable for moonwalks took seven years. Pressurization, oxygen, and cooling were taken care of by an inner layer that rarely made it into photos. See the middle picture above. The outer layer was a laminate designed to resist abrasion, radiant heat, and micrometeorites. The backpack took the place of the umbilicus and provided power and oxygen.

Backpacks were first tested on Apollo 9 by McDivitt and Schweickart. David Scott performed a standup EVA — that is, he stood up in the open hatch of the CM — but he received life support through an umbilicus. This was the pattern for Apollos 9 through 17. The moon bound astronauts used backpacks, the CM pilot did not.

If the LM tested on Apollo 9 had worked, but the backpack hadn’t, Apollo 11 could still have landed on the moon, but Armstrong could not have left the Eagle to make “once small step . . .”

But it did work. The EVA was cut short by Schweickart’s space sickness, but the backpack worked fine.

more on Apollo 9 Friday

571. Nothing New Under the Sun

There is nothing new under the sun, but the old things keep coming back to poke you in the eye, and it all seems interconnected.

On MLK day I talked about growing up and shaking off racism. Then I talked about America’s love affair with great men who really aren’t all that great.

That led to a back and forth in the comments in which I talked about trying to teach truth in American schools, by using the space program as an example. Meanwhile, I’ve been trying to remind my younger readers of the incredible reality of what was happening fifty years ago in space exploration.

On President’s Day and we looked at the last half century’s sad and depressing crop of leaders.

Then it all came together in one coincidental discovery. I bought a copy of Apollo in Perspective by Jonathan Allday to fill in some gaps in my knowledge, and found this inserted as an epilog:

Men who have worked together to reach the stars are not likely to descend together into the depths of war and desolation. Lyndon B. Johnson, 1958

I need to insert three paragraphs of blank space here, to express my incredulity.

In 1958, Sputnik had just been launched. America was in a panic. The bureaucrats and the military were fighting (as usual) and the result was that American satellites were not being launched. The space program had begun in fear, riding on rockets which had been designed to carry nuclear warheads, and fueled by the terror those same warheads represented. Men were not working together to reach space; countries were working against each other for the best capacity to wage war.

Not only was every word in the quotation a lie, it was all a set of lies that no one could have believed, even then. Every word was the exact opposite of the truth, even as contemporary Americans understood the truth.

And all this from Lyndon Johnson, who would, a decade later, give us the Viet Nam war.

It seems that the greatest of our achievements and the most poignant of our failures remain inexorably intertwined. I guess that’s the human condition, but it’s hard to take sometimes.

Running From President 11

This has been a tale from an alternate universe. In that world, Hillary did not win and Donald did not win.

Disaffected liberals distanced themselves from Hillary after the Wiki-leaked emails told what her people did to Bernie. Disaffected Christians stuck to their guns over Trump’s immorality. It was like our universe, with a single difference. Leap’s non-candidacy had caught fire and provided an alternative which vast numbers accepted..

Donald Trump denounced him. He said that if Leap claimed to be sixteen years old, that made him too young to be President. Hillary kept her mouth shut; it was one thing she could do better than Trump

Things got out of hand. On November eighth, after a massive write-in campaign by people who surely didn’t really expect to succeed, Leap Alan Hed was voted in as the forty-fifth president of the United States.

Oh, well. Could he be any worse? The people of his alternate universe may never know.

Leap read the election results at a news stand and his heart all but stopped. Then he ran.

It is said that anyone who wants to be President is automatically disqualified by reason of insanity. Maybe; if so Leap was the sanest man in America, because he really didn’t want it. He considered trying for asylum in another country. He thought about Switzerland, but he gets a nosebleed in an elevator. He thought about Russia, but the last thing he needed was to be caught up in that tug-of-war. He considered Great Britain, but he had once lived in California and the thought of all that rain dissuaded him.

He decided to just disappear, and he did. I don’t know where he went; he didn’t tell me. Geraldo claimed to know, but that turned out to be a bluff. Somebody said they saw him heading north, following a compass, but everybody knows you can’t walk to the North Pole now that the ice caps have melted. He was probably looking for a Fortress of Solitude, and you can’t blame him.

All those people who voted for Leap are now wringing their hands and wondering what is going to happen next. Every one of them thought they were the only one who would write him in. They never thought he would win. They certainly never thought he would run to Canada like a modern day draft dodger. Which, essentially, is what he is — drafted to be President, and scared out of his wits.

Hillary has been very quiet about it all. She hopes to win in the House if they can find Leap and get him to resign. But it’s problematical. There are only fourteen Democrats and eleven Republicans in the new Congressional class. Aside from a few Libs and Greenies, the rest are all newly elected Independents, sent by a disgusted America. Bernie is smiling about that.

Donald claims he will still win, and when he does, he plans to invade Canada to bring back that traitor Leap. I think he just might.

We’ll have to leave their alternate universe now, worried sick and talking to each other about the kind of changes one man can make — even if he doesn’t want to. We have to get back to our own universe. We have problems of our own.

finis

570. Lunar Excursion Module

This is the Apollo 9 LEM, photographed after it separated from its CSM. Photographs of either CSMs or LEMs in space are typically nose on, since each could only be photographed from the other (there wasn’t anyone else around to do it), and they only separated in lunar orbit at the outset of a landing maneuver or at rendezvous. Apollo 9 separated in low earth orbit and performed various maneuvers there, making this side-on view, right above the Earth, a rare treat.

Apollo 9 launched fifty years ago March third. That’s a Sunday, and I don’t post on Sunday, but there will be plenty on that mission the following week.

Virtually all of the missions returning from space have returned by atmospheric braking and parachute, or atmospheric braking followed by a winged landing. In the early days of science fiction movies, landings were always tail first but that was not possible on Earth until Elon Musk and SpaceX finally managed it in 2015.

On the moon, there was no choice but to land tail first, slowed by rockets, and the LEM was built around that fact. Learning how to land tail first was also a major issue; see 185. The Flying Bedstead.

The LEM was a two stage rocket. The descent stage, dot-shaded gray in this NASA drawing, made up about two thirds of the mass of the LEM. It contained a frame, tanks with fuel and oxidizer, a rocket engine, and the landing gear. It also contained storage space, accessed from the outside, for the equipment that would be used once the astronauts were on the moon.

The landing gear served multiple functions. The pads at the end of each leg were designed to keep the LEM from sinking into the lunar soil. Their size was both a compromise and a guess. No one knew either how deep the lunar dust was, nor how much structural integrity it had. Worst case scenarios had the LEM sinking hopelessly into many feet of lunar dust, the accumulation of millions of years of micrometeorites pulverizing the lunar surface. In fact, the pads only sank slightly.

The number of unknowns that faced the engineers and mission planners was immense. It it hard for people born since the seventies to imagine the depth of our ignorance before Apollo 11 landed.

The struts were designed to absorb energy, because the LEM could not fire its engines all the way to the ground. The upwash of lunar dust and rocks would have blinded the pilot and possibly knocked holes in the LEM, so the engine was designed to be cut off at a certain height above the lunar surface, letting the LEM fall the last small distance. But how high? That was another calculated estimation (guess). And how much spring would the struts need? Too little and the LEM would crash to the ground. Too much, and it would rebound with possibly disastrous results. And if one leg landed on a boulder or in a hole, the whole LEM might tip over and be unable to return to orbit.

The ascent stage contained crew space, controls, computer, radar, guidance systems, oxygen for human use, and the crew in their space suits. It also contained fuel and oxidizer and its own rocket engine, all smaller than for the descent stage since the LEM ascent stage was one third the size and mass of the complete LEM. The descent stage formed a launching platform for the ascent stage.

When Apollo 17 launched from the moon, a camera was mounted on the rover which was left behind. You can see all 36 seconds of the last ascent stage liftoff from the moon at https://www.youtube.com/watch?v=9HQfauGJaTs.

Apollo 11 proved that all this would work. Apollo 10 was a dress rehearsal of everything but the final landing. But until Apollo 9, fifty years ago this weekend, no one knew if the LEM would work at all.

More next week.

Running From President 10

It was late on November seventh. The sun had already set and with its passing, the chill of evening had set in hard. Leap Alan Hed — calling himself Joe and hoping that none of his homeless companions around the fire would recognize him — pulled his coat closer around his shoulders and stretched his hands out to the warmth.

It was a vain hope. The press had hounded him out of his home in Dannebrog, and hounded him half way across America and back again. His picture had been spread across the country in countless newspapers and television broadcasts.

One of his companions said, “Joe,” and his tone made it clear that he knew the real name behind the nom de flight, “tomorrow is the big day. What do you think will happen?”

Leap gave up the masquerade. He said, “I don’t know. They won’t vote for me. They aren’t that stupid, no matter how frustrated they have become. They will vote for Hillary and God knows what that will mean. Or they will vote for Donald, and everybody knows what that will mean.

“In a few days, or maybe a few weeks, I’ll be able to surface again and get back something like a life of my own. I just hope there’s a country for me to go back to.”

His companion shrugged and said, “I don’t have a life to go back to. I haven’t had anything like a life in years. I can’t vote for you, or anybody else. You have to have an address to register to vote and I haven’t had an address in in a long time. But I would vote for you.”

“Why, for God’s sake? Why?”

“Because you aren’t him and you aren’t her, and anybody else is better. Somebody has to do the job. At least you don’t want it, and that means something.”

Leap quoted, “If nominated, I won’t run. If elected, I won’t serve.”

“I don’t think so. I think you would come out of hiding and do your duty.”

Leap shook his head, and just said, “No.”

“Its going to be Donald or Hillary or you,” the other said.

Leap sighed. He said, “No good can come of this.” more tomorrow

569. Apollo: Profile of a Mission

This is the Apollo 9 LEM, photographed after it separated from its CSM. NASA photograph.

This was originally intended as a detailed picture of the Lunar Excursion Module, but it became clear while writing that before I could talk about the vehicle, I had to lay out it’s place in the scheme of things. This post then became a generic mission profile, and details of how the LEM worked will come in the next post.

If you Google lunar lander, you will find the LEM, but you will also find a lot of forgotten craft. Both the United States and the Russians had unmanned lunar landers and lunar crashers. That’s not a joke. Before soft landing was perfected, we learned a lot about the moon from probes which photographed all the way down to a crash landing. Those piles of rubble that dot the moon were the ancestors of Spirit and Opportunity.

That’s not good enough for a craft that was to be, in the vernacular of the day, man rated.

The LEM, or LM as it is often called today, was unlike any manned craft before or since. It has been called a “true” spacecraft, but in fact it only got half way toward that ideal. A “true” spacecraft, built in space and powered by a low force, long acting engine, would never have to endure the vicissitudes of atmospheric friction or high gravity.

The LEM did have to withstand multiple gravities during its launch from Earth, and again on landing and taking off from the moon. However, it never had to come in contact with atmospheric friction because it spent the launch hidden behind a streamlined clamshell shroud. It didn’t itself have to be streamlined, and its skin could be flimsy. The astronauts joked about being afraid of accidentally putting a boot through the side of the vessel. At least I think it was a joke.

The Saturn 5 is called a three stage rocket. It could as easily and accurately be called a six stage rocket. The first and second stages were designed to burn all their fuel and fall away. The third stage carried the rest of the vehicle into orbit and then shut down; at that point, it’s fuel was not exhausted.

If the mission was to lunar orbit or landing, the Apollo craft stayed in low earth orbit long enough to establish that all was well, then the third stage fired again to send the craft toward the moon.

On Apollo 8, there was no LEM, so in December I only described the Saturn and the CSM. Apollo 9, whose fiftieth anniversary comes in about ten days, had a LEM but never left near Earth orbit. Apollos 10 through 17 were lunar missions. They had similar flight plans and used all “six” stages.

When the Saturn third stage fired a second time, it put the entire remaining craft into a orbit toward the moon. The third stage would have gone right along with the rest to the craft, if it had been allowed to do so.

What happened next on each mission was well presented in the movie Apollo 13, but only if you already knew the what, the when, and the why. It was drama, not documentary, but with excellent animation. If you have a DVD of Apollo 13, take a look.

The LEM, and the CSM (command and service modules, treated as one) had initially been stacked vertically above the third stage, with the LEM protected by a shroud. The attached NASA drawing also shows the abort rocket above the command module, but that had already been discarded by the time the craft was actually on its way to the moon. All three astronauts were in the CM. The CSM, the LEM, the shroud, and the third stage are all still in one piece.

Now the CSM was released; it moved forward on maneuvering thrusters and turned a one-eighty. The LEM was still attached to the third stage. Now the clamshell opened up and the CSM moved carefully forward and docked with the LEM, front of CSM to top of LEM. The LEM was released from the third stage and towed away by the CSM. This position allowed the hatches on the CSM and LEM to mate so the astronauts could move freely between the two craft. The legs of the LEM, previously tucked under to fit within the shroud, now extended into lunar landing positions.

From this moment until lunar orbit was achieved and it was time for the LEM to move away from the CSM and land (or nearly land in the case of Apollo 10), the LEM/CSM were essentially one space craft. The Saturn third stage now made one last burn, changing to an orbit that would carry it out of the way.

For about two and one half days, the LEM/CSM drifted toward the moon. Upon leaving low Earth orbit, the craft had been traveling at close to 25,000 miles per hour. It should have reached the moon in ten hours, but the Earth’s gravity was pulling at it and slowing it down. Approximately six sevenths of the way to the moon, the craft was traveling at it’s slowest speed. At this point the Earth’s gravity and the moon’s gravity were in equipoise; thereafter the moon’s gravity accelerated the craft again.

At a point on the back side of the moon, the SM engine fired, slowing the combined craft enough to keep it from whipping around the moon and returning to Earth. It entered orbit of the moon. This burn, and the later one which put the CSM on its homeward trajectory, make the CSM essentially the fourth stage of the Apollo/Saturn mission.

Now it was time for the LEM to earn its keep.

What’s that you ask? Stages five and six? Where were they? The LEM itself was a two stage rocket. We’ll get details on that next post.

Running From President 9

Leap Alan Hed was going to Tulsa, to have it out with Billy Joe Barker. It had been eight weeks since he left his home in Dannebrog, running from the media circus that Barker had set in motion by calling on Americans to write in Leap’s name for President. Barker had started it all; Leap figured Barker owed it to him to at least try to stop it.

It was hard for Leap to travel. He could go by bus, slumped down, face covered by the brim of his hat, and take his chances on being recognized. That was how he got to Hays, Kansas. There he picked up a ride with a friend of a friend from Dannebrog who took him as far as northern Oklahoma. He found himself stranded in Ochelata on a Sunday morning.

By now Leap was hungry for normalcy, and on Sunday morning, that meant church. He couldn’t go in, of course. If you are from the city, or the north, you may not know this, but when you go into a small town southern church as a visitor, everyone in the congregation will come up and shake your hand, ask you your name, welcome you to their fellowship, and half of them will invite you for Sunday dinner. Leap would have loved that, but since his face had been in every newspaper in America . . .

The Ochelata Baptist Church was a long, low green roofed building, built around a courtyard. There was a park on the east, so that was the direction Leap used for his approach. He walked in, as bold as if he belonged there, across the park to the blind back of the sanctuary where he settled down hidden by a few trash cans and sat for two hours listening to the service taking place on the other side of the wall. From time to time, his eyes were awash with the moisture of homesickness.

He slept the day out in a wooded ravine, and walked southward on Highway 75 during the night. Morning found him somewhere, but he didn’t know where, hungry, cold, and discouraged. He was in front of a convenience store, on the outskirts of a small town, so he pulled up the hood of his sweatshirt and went in. He kept his eyes floorward as he picked out a couple of donuts and a cup of coffee, and didn’t look up at the checkout where the surveillance cameras are clustered. Outside again, he found a bench at the edge of the light.

He was on his second donut when a pickup rolled to a stop. A man of fifty got out and exchanged a few parting words with his driver before she u-turned and disappeared. Everything about their casual friendliness said man and wife. He was carrying a brown paper bag that said “lunch”. He crossed to Leap’s bench and sat down.

He glanced at Leap, looked away, then his head snapped back again. He studied Leap for about five seconds, then turned his head back toward the road and didn’t look again.

Discovered! This man knew exactly who Leap was, but he made no acknowledgment. With eyes averted, the man talked as casually as if he hadn’t guessed Leap’s identity. Leap had seen that reaction several times in the farm country and small towns where he had been wandering these last weeks. People in rural America have a respect for privacy and a willingness to mind their own business which he found admirable

Leap’s bench mate said was waiting for a bus that would take him west to Sperry where he had a job as a school custodian. And, yes, there was another bus that went south to Tulsa. After twenty years as a skilled lathe operator in a small factory, the man had lost his job after 2008. He had been out of work, except for odd jobs, for seven years, and now he was pushing a broom at age fifty, and glad to get the work.

He had gone from Democrat, to Republican, then further with the rise of the Tea Party. He had no faith in government, no faith in politicians, but he still had faith in free enterprise. Where he had worked all his life, the owner had been just down the hall, working all day behind a second hand desk in a room with plywood walls. They had gone to the same church, and every decision the owner had made had included concern for his employees.

The factory made small parts, that went onto larger parts, that then went onto automobiles. In 2008, the system collapsed and the factory folded. Leap’s temporary friend blamed free trade and Hillary and Obama. He did not blame large corporations and their CEOs. His vision of free enterprise was a hard working owner in a dusty plywood room, with forty hard working employees out on the floor making things. Multi-national corporations were outside his experience and outside his imagination.

The bus rolled up with whoosh of air brakes. As the man got up, he added, shaking his head, “Donald Trump says he’s going to fix all that.”

“Do you believe him?”

“No, not really.”

“Are you going to vote for him?”

“I might. Maybe not, though. It’s hard to vote for a man that full of hate.”

After a pause, he added, “I might just throw my vote away on this guy called Leap. That way I won’t be responsible for what happens later.” more Monday